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Non-linear elasticity of a liquid contact line
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Abstract – By using energy minimization computations we study the distortion of a wetting
contact line pinned on a single defect. We find that the elastic restoring force of the line depends
non-linearly on the amplitude of the distortion and we estimate the anharmonic corrections to the
linear elastic model. These results suggest the importance of non-linear effects in the problem of
contact line pinning.
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Introduction. – “Partial wetting” refers to a situation
when solid, liquid and gas phases coexist along the
so-called “contact line” (CL). A deformation of the CL
from its equilibrium shape causes a long-range distortion
of the liquid/gas interface which results in a non-local
elasticity [1]. CL distortions occur naturally when a
liquid wets partially a heterogeneous solid in which case
the CL is pinned on the local changes in substrate
wettability or “defects”. The phenomenon of CL pinning is
relevant to a large number of applications including water
repellency [2], coating and printing technologies and the
mediated self-assembly of nano-objects [3].
CL elasticity has been modeled using the linear approx-

imation firstly introduced by Joanny and de Gennes
(JdG) [4]. Within this approximation, strictly valid in the
limit of small CL deformations, the restoring force of the
CL has the linear, non-local form

Fel[η] =
γ sin2 θ

π

∫
η(x′)
(x−x′)2 dx

′, (1)

where η(x′) is the normal displacement of the CL from its
average position at the coordinate x′ along the line, x is
the coordinate of the force pinning the line, γ is the liquid
surface tension and θ the contact angle of the liquid on
the substrate.
However, recent experiments [5] have found that the

roughness of a portion � of the CL on a heterogeneous
surface scales as �ζ with an exponent ζ ≈ 1/2, sensibly
larger than predicted by the linear JdG model [6]. This
discrepancy has risen the question whether linear elas-
ticity can accurately describe the stiffness of a real CL.
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Le Doussal et al. [7] have recently shown that a large
enough second-order correction to eq. (1) may increase the
theoretical roughness exponent thus reducing the discrep-
ancy between theory and experiment. Although this result
is suggestive of the importance of non-linear effects, a
quantitative analysis of the non-linear elasticity of the CL
is still lacking.
In this paper we use energy minimization calculations

to determine the equilibrium configurations of a CL
pinned on an isolated defect and the associated restoring
force. We find that the computed force is in excellent
quantitative agreement with the linear approximation only
for distortions significantly smaller than the characteristic
size of the defect. Beyond this limit, the force depends
non-linearly on the amplitude of the distortion and we
estimate the anharmonic coefficients of the CL stiffness.
These results suggest the importance of non-linear effects
in the problem of CL pinning and may lead to refined
theoretical models of CL elasticity.

Numerical methods. – Similarly to JdG’s
approach [4] we approximate the shape of the unper-
turbed fluid surface near the CL as an inclined plane
making a contact angle θ with the solid as illustrated in
fig. 1(a). This assumption is valid at length scales smaller
than the capillary length κ−1 = (γ/ρg)1/2 and when the
fluid is connected to an infinite reservoir. Here we are
interested in the case of a flat homogeneous solid that
exhibits a single, squared defect of size ξ centered at the
coordinates (xd, yd). The wettability of the defect is a
function θ(x, y) of the substrate coordinates (x, y). The
surface free energy of a finite portion of the liquid wedge
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Fig. 1: (a) The shape of the unperturbed liquid surface near the
CL is approximated by an inclined plane, surface area L×h,
making a contact angle θ with the solid. The liquid surface
is represented by a piecewise linear set of N triangular facets.
(b) The wettability of an isolated defect in the case θ= 90◦.

pinned on the defect can be written as

G= γlgΣlg − γlg
∫
∑
sl

cos θ(x, y)dxdy, (2)

where Σlg and Σsl are the portions of the liquid wedge in
contact with the gas and the solid respectively.
Here we model the defect wettability with the following

function:

cos θ(x, y)= cos θ+(1− cos θ) cosπ (x−xd)
ξ

cosπ
(y− yd)
ξ

.

(3)
This specific defect “structure”, shown in fig. 1(b),

exhibits non-smooth boundaries and a center which
is completely wet by the liquid (“attractive” defect).
Although other defect structures can be considered,
the results of this paper only depend quantitatively
on this particular choice. For example, a defect with
sharper edges would pin more strongly the CL resulting
in a stronger restoring force. However, the qualitative
behavior of this force is independent of the “strength” of
the defect.
Once the functional form of the heterogeneity cosθ(x, y)

is defined, minimization of the free energy G with respect
to Σlg, under the constraint of constant wedge’s volume,
provides the equilibrium shape of the liquid-gas interface
and in particular of the CL. We have performed this
minimization numerically making use of the public-
domain software “Surface Evolver” (SE) [8,9]. This
package has been already used to study equilibrium liquid
morphologies on chemically patterned surfaces [10,11] or
on substrates with spatially periodic wettability [12]. To
our knowledge, this is the first application to the study
of CL pinning.
To minimize the system free energy, eq. (2), using the

SE the liquid-gas interface is represented by a piecewise
linear set of N triangular facets each one supporting three
vertices at its corners. The initial configuration of the

facets is a finite portion of a plane, length L, making an
angle θ with the solid as illustrated in fig. 1(a). L/2 sets a
lateral cut-off scale of the interface distortion which in an
actual experiment can be identified with κ−1 or a macro-
scopic sample size. In order to increase the accuracy yet
reduce the computing time, the facet density is increased
in the vicinity of the CL where the interface distortion
is expected to be larger. Vertices and facets lying on the
(x, z)-plane are deemed on a horizontal line, which sets
the boundary condition of planar interface sufficiently far
away from the CL (constraint Ch). This is equivalent to
introducing a cut-off length h of the interface distortion in
the vertical coordinate. We have set L� h� ξ to ensure
accurate results. Vertices initially lying on the planes
(x, y, 0) (i.e. the n points belonging to the CL), (0, y, z)
and (L, y, z) are constrained to these surfaces. All other
vertices are free to move in every direction. Under these
constraints the first term on the right side of eq. (2) is
calculated by the SE as the total area of the facets. The
second term is computed not as a surface but as a line inte-
gral along the CL using the Stoke’s theorem [9]. Starting
from the initial configuration of fig. 1(a) the equilibrium
shape of the liquid free surface is obtained by the SE in
an iterative manner using a gradient descent technique.

Results and discussion. – We have calculated the
equilibrium distortion induced by the defect pictured in
fig. 1(b) on a portion L of the CL for small, intermediate
and large contact angles, respectively θ= 10◦, 45◦ and 90◦.
For these specific computations we have used the parame-
tersN = 4700, n= 150, L/ξ = 50 and h=L with the defect
positioned at the reduced coordinate (x/ξ = 25, y/ξ = 25).
The choice of the ratio L/ξ is consistent to the experi-
ments [5,13] where typically L� 1mm and ξ � 10µm. The
wedge is retracted progressively until the defect, initially
buried under the liquid, pins the CL. To retract the wedge
we translate the coordinate yh of the constraint Ch by a
small amount ∆yh/ξ =−2.5× 10−2 and we re-evolve the
surface to the energy minimum Ĝ(yh) within the machine
precision (15 digits). This precise minimization ensures
the high accuracy of the force computation. The equilib-
rium configurations of the pinned CL, η(x), are shown in
fig. 2(a) for a contact angle θ= 45◦. These curves illustrate
(from top to bottom) the progressive distortion of the
CL as it moves across the defect. The CL is not perfectly
pinned at the defect boundaries because the defect
exhibits relatively smooth edges. The amplitude of the
CL distortion, defined as ηM = η(x/ξ = 25)− η(x/ξ = 50),
increases reaching the maximum ηM = 0.75ξ. Subse-
quently, the CL detaches from the defect relaxing to its
unperturbed shape (not shown).
To test the accuracy of the linear model we have

compared the numerical CL shape to the logarithmic
JdG profile [4] η(x) = F0ln(Lc/|x− d|). For this purpose,
a logarithmic function (solid line) was fitted to the
numerical profile (open dots) omitting data points close
to the defect |x/ξ− 25|< 1/4 as illustrated in fig. 2(b).
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Fig. 2: (a) Equilibrium configurations of a CL that is progres-
sively retracted across a wettable defect for θ= 45◦. (b) Loga-
rithmic fits (solid lines) to the CL configurations (open dots)
for small (ηM = 0.056ξ, top) and large (ηM = 0.75ξ, bottom)
distortions.

For both small (ηM = 0.056ξ, top) and large
(ηM = 0.75ξ, bottom) distortions the logarithmic shape
describes reasonably well the numerical profile with the
best-fit parameters d= 0.2ξ and Lc = 19.7ξ. d represents
the effective radius of the defect which, as expected, is
smaller than ξ/2 because the defect exhibits smooth edges.
The goodness of the fit (as indicated by the χ2 values) is
better for small distortions and in general the logarithmic
profile does not describe very accurately the CL shape
far from the defect because the fitted Lc is smaller than
the characteristic cut-off length of the system, L/2 = 25ξ.
This means that the simulated CL profile decays to the
unperturbed position more rapidly than a logarithmic
fall-off. These findings are consistent to the experiment
by Nadkarni and Garoff [13] who have studied the shape
of the CL pinned on a single defect. These authors have
also found that the values of Lc obtained from fits to the
experimental CL profiles were sensibly smaller than the
expected cut-off length set by gravitational forces. They
have attributed this discrepancy to the effect of substrate
inhomogeneity that interferes with the gravitational
flattening of the CL. However, our results show that this
discrepancy may result not only from the inhomogeneity
of the solid but also from the inaccuracy of the logarithmic
profile to model the decay of the CL distortion.

Fig. 3: (a) Reduced force per unit length of the CL (dots)
plotted as a function of ηM for θ= 10◦ (inset), 45◦ and
90◦. Lines represent the linear JdG force whereas curves are
polynomial fits to the data excluding points close to the
depinning threshold.

For each value of ηM we have calculated the reduced
restoring force per unit length of the CL by using the
Finite Differences method

FCL(yh, ηM )

γ
=
Ĝ(yh+ δyh)− Ĝ(yh− δyh)

2δyhL
, (4)

where Ĝ(yh± δyh) are the energy minima computed after
the wedge has been translated, respectively, along the
direction ±y by a small amount δyh/ξ =−2.5× 10−6. The
value of δyh was chosen in order to achieve a 10

−7 accuracy
in the force computation.
The reduced force per unit length of the CL (minus the

reduced Young force FY /γ = cos θ) is plotted as a function
of the reduced distortion ηM/ξ for θ= 10

◦ (inset), 45◦

and 90◦ in fig. 3. The results indicate that, for each value
of θ, the restoring force scales linearly with ηM only for
small values of the distortion (ηM/ξ � 0.1). In this linear
regime the computed force is in excellent quantitative
agreement with eq. (1) using d and Lc (as obtained from
the logarithmic fits) as lower and upper cutoff lengths

respectively: FJdG
γ
=
[
πξ sin2 θ
L ln(Lc/d)

]
ηM/ξ (lines). The coeffi-

cient in the square brackets is the JdG “spring constant”
of the line. This result proves the reliability and accuracy
of the numerical computations. For larger distortions, the
restoring force increases non-linearly with an apparent
“softening” until saturation occurs in proximity of the
depinning threshold. Close to the depinning, because of
non-linear effects, the JdG approximation overestimates
the actual value of the reduced force by 43% for θ= 10◦

and 20% for θ= 90◦.
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Table 1: Coefficients ki of a 4th-order power series expansion of
the contact line force along with values of kJdG for various θ’s.

θ 10◦ 45◦ 90◦

kJdG (10
−3) 2.1 6.8 13.6

k1 (10
−3) 2.1± 0.1 6.7± 0.1 13.5± 0.1

k2 (10
−3) −0.8± 0.1 −2.3± 0.2 0

k3 (10
−3) 0.1± 0.2 2.0± 0.5 −1.7± 0.1

k4 (10
−3) −0.6± 0.2 −3.2± 0.3 0

We have expressed the non-linearity of the CL force in
terms of a power series of order n:

FCL−FY
γ

=

n∑
i=1

ki(ηM/ξ)
i, (5)

where ki represents the coefficient of the i-th term.
Coefficients up to the 4th order have been estimated by
fitting eq. (5) (with n= 4) to the numerical force data. For
θ= 90◦ only odd indices have been retained to account
for the symmetry of the CL energy upon the inversion
η→−η [7]. Results of this calculations are summarized in
table 1 along with the values of kJdG for various θ’s. There
is an excellent agreement between k1 and kJdG for every θ
indicating that, as expected, the linear model is accurate
for small perturbations. The second-order coefficients are
always negative for θ �= 90◦ which reflects the softening of
the restoring force at large distortions. This also occurs
for θ= 90◦ since in this case the third-order coefficient is
negative. The magnitude of the anharmonic coefficients
relative to the harmonic term decreases with θ suggesting
that the non-linearity of the CL elasticity decreases with
the stiffness of the line (which is proportional to sin2 θ
in first approximation). However, non-linear effects are
significant for all the values of θ studied here.
Although the results described above were obtained

for a specific defect’s energy, the CL elasticity exhibits a
similar non-linear behavior regardless of the specifics of the
defect’s energy. This is suggested by similar calculations
performed using a defect with a larger pinning strength. In
this case, for the same ηM and θ, the restoring force of the
line is found to be slightly larger than the values shown
in fig. 3 because of the larger defect’s effective radius.
However, the same qualitative behavior is observed. For
small distortions, the elastic response of the CL agrees
quantitatively with the JdG model, whereas, for large
distortions, a departure from the linear model along with
a softening of the CL stiffness is observed. In this case,
the degree of non-linearity is found to decrease with the
contact angle as well.

Summary. – We have used numerical methods to
study the equilibrium configurations of a liquid contact

line pinned on a single defect and the corresponding
capillary restoring force. Our results show that the decay
of the contact line to the unperturbed position is slightly
faster than the logarithmic fall-off predicted by the linear
elastic model. Furthermore, the restoring force of the
contact line exhibits a significant degree of non-linearity,
independently of the value the contact angle far from
the defect. However, the non-linearity of the contact line
elasticity decreases with the contact angle.
Although these results apply to the pinning on a single

defect, they may help explain the discrepancy between the
roughness exponent of the line measured on heterogeneous
surfaces and the value predicted based on the harmonic
approximation. Indeed, it is known that large enough non-
linear terms of the elastic energy increase the theoretically
expected roughness.
Finally, the numerical approach introduced here can

be extended straightforwardly to a large variety of
heterogenous surfaces and to axisymmetric drops, thus
enabling the study of phenomena such as contact angle
hysteresis.
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